
Using Form
Components With Delphi 1
by Rohit Gupta

Did Borland lead you to believe
that you couldn’t have form

components in Delphi 1? Well, you
can, with a minute bit of trickery. I
have been using this technique for
months now without any problems
at all. I discovered it when I got sick
of duplicating code again and
again...

Creating And Using
The Form Component
The method is to create a unit (not
a form) which consists of one or
more form definitions, see Listing 1
(over the page) for one that I use as
my default form. We will come back
to what it does a little later. This is
your form component.

To use the form component, first
create a form normally (an exam-
ple is shown in Listing 2). Then
change the class of the form from
TForm to TNewForm. Finally add
NewForms to the uses clause. Listing
3 shows the finished product. That
is all the jiggery pokery required!

Drawbacks
Well there had to be a catch some-
where! Firstly, there is no way to
have access to a property editor,
so the best way to set properties is
in CreateParams (see Listing 4).
Secondly, it’s a pain if you want the
form component to own compo-
nents that are inherited, but it’s not
impossible.

Using NewForms
You are free to do what you wish
with NewForms. It is my idea of what
the default form should have been
and is still evolving day by day.
Currently it supports the following:
➣ A Launch procedure which

creates a new form if one is not
present, otherwise it displays,
un-minimises and brings to the
front the existing form.

➣ A conversion of Enter key-
presses to Tab key-presses if

required (ideal for data entry
applications).

➣ An easy method of setting the
minimum and maximum sizes
and the position of the form
when maximised.

➣ Automatic setting of Action to
caFree in FormClose if the form is
MdiChild.

So how does it work? The Create
constructor calls the inherited
Create first. Next if Set_Enter has
been set to True then it saves the
current event handler for
OnKeyPress and sets a new
OnKeyPress. It does the same with

unit Unit1;
interface
uses Forms;
type
 TForm1 = class(TForm)
 private
 public
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
end.

➤ Listing 2

unit Unit1;
interface
uses Forms, NewForms;
type
 TForm1 = class(TNewForm)
 private
 public
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
end.

➤ Listing 3: Sample Form1
using the NewForms
component

unit Cln_Form;
interface
uses Forms, NewForms;
type
 TClnForm = class(TNewForm)
 procedure CreateParams(var Params : TCreateParams); override;
 private
 public
 end;
var ClnForm: TClnForm;
procedure Launch_Cln_Form;

implementation
{$R *.DFM}

procedure Launch_Cln_Form;
begin
 Launch(TClnForm,ClnForm);
end;

procedure TClnForm.CreateParams(var Params : TCreateParams);
begin
 if Cfg.MDI_App then { I have it as a user customised option }
 { if Mdichild the form will close correctly }
 FormStyle := fsMdiChild;
 Set_Enter := True; { Enable Cr to Tab conversion }
 Set_Max := True; { Set maximum size }
 Max_Width := 600;
 Max_Height := 400;
 Set_Min := True; { Set minimum size }
 Min_Width := 300;
 Min_Height := 200;
 Set_Pos := True; { Set Maximise position }
 Max_Left := 50;
 Max_Top := 50;
 inherited CreateParams(Params);
end;

end.

➤ Listing 4: Using NewForms fully

20 The Delphi Magazine Issue 14

unit NewForms;
{$R-,S-,I-,O-,F-,A+,U+,K+,W-,V+,B-,X+,T-,P+,L+,Y+,D-}
interface
uses
 WinTypes, WinProcs, Messages, Controls,
 Classes, Forms;
type
 TNewForm = class(TForm)
 constructor Create(AOwner : TComponent); override;
 procedure CreateParams(var Params : TCreateParams);
 override;
 procedure FormKeyPress(Sender: TObject; var Key:
 Char); virtual;
 procedure FormKeyDown(Sender: TObject; var Key:
 Word; Shift: TShiftState); virtual;
 procedure FormClose(Sender: TObject; var Action:
 TCloseAction); virtual;
 private
 procedure WMGetMinMaxInfo(var Message:
 TWMGetMinMaxInfo); message WM_GETMINMAXINFO;
 public
 Set_Enter : Boolean; { Set to convert CR to TAB }
 Set_Max : Boolean;
 { Set and init following to fix max size }
 Max_Width,
 Max_Height : Word;
 Set_Min : Boolean;
 { Set and init following to fix min size }
 Min_Width,
 Min_Height : Word;
 Set_Pos : Boolean;
 { Set and init following to fix posn }
 Max_Left,
 Max_Top : Word;
 OldOnkeyPress : TKeyPressEvent;
 OldOnkeyDown : TKeyEvent;
 OldOnClose : TCloseEvent;
 FormVar : ^TForm; { set by Launch }
 end;
type
 TFormClass = class of TNewForm;
 TFormPtr = ^TNewForm;
{ Launch a form if not already open, else un-minimise
 and bring to front }
procedure Launch(LClass : TFormClass; var LForm);

implementation

constructor TNewForm.Create(AOwner : TComponent);
begin
 inherited Create(AOwner);
 if Set_Enter then begin
 OldOnKeyPress := OnKeyPress;
 OnKeyPress := FormKeyPress;
 OldOnKeyDown := OnKeyDown;
 OnKeyDown := FormKeyDown;
 KeyPreview := TRUE;
 end;
 OldOnClose := OnClose;
 OnClose := FormClose;
end;

procedure TNewForm.CreateParams(
 var Params : TCreateParams);
begin
 if Set_Max then begin
 Params.Width := Max_Width;
 Params.Height := Max_Height;
 end;
 inherited CreateParams(Params);
end;

procedure TNewForm.FormKeyPress(
 Sender: TObject; var Key: Char);
begin
 case Key of
 #13 :
 begin
 PostMessage(Handle, WM_NEXTDLGCTL, 0, 0);
 Key := #0;
 end;
 else begin
 if assigned(OldOnKeyPress) then
 OldOnKeyPress(Sender, Key);
 end;

 end;
end;

procedure TNewForm.FormKeyDown(
 Sender: TObject; var Key: Word; Shift: TShiftState);
begin
 case Key of
 Vk_Return :
 Key := Vk_Tab;
 else begin
 if assigned(OldOnKeyDown) then
 OldOnKeyDown(Sender, Key, Shift);
 end;
 end;
end;

procedure TNewForm.FormClose(
 Sender: TObject; var Action: TCloseAction);
begin
 Application.OnHint := nil;
 if FormStyle = fsMdiChild then
 Action := caFree;
 if assigned(OldOnClose) then
 OldOnClose(Sender,Action);
 if assigned(FormVar) then
 FormVar^ := nil;
end;

procedure TNewForm.WMGetMinMaxInfo(
 var Message :TWMGetMinMaxInfo);
begin
 with Message.MinMaxInfo^ do begin
 if Set_Max then begin
 if Max_Width <> 0 then
 ptMaxSize.X := Max_Width; {Width when maximized}
 if Max_Height <> 0 then
 {Height when maximized}
 ptMaxSize.Y := Max_Height;
 {Tell windows you have changed minmaxinfo}
 Message.Result := 0;
 end;
 if Set_Pos then begin
 if Max_Left <> 0 then
 {Left position when maximized}
 ptMaxPosition.X := Max_Left;
 if Max_Top <> 0 then
 {Top position when maximized}
 ptMaxPosition.Y := Max_Top;
 {Tell windows you have changed minmaxinfo}
 Message.Result := 0;
 end;
 if Set_Min then begin
 if Min_Width <> 0 then
 ptMinTrackSize.X := Min_Width; {Minimum width}
 if Min_Height <> 0 then
 ptMinTrackSize.Y := Min_Height; {Minimum height}
 {Tell windows you have changed minmaxinfo}
 Message.Result := 0;
 end;
 if Set_Max then begin
 if Max_Width <> 0 then
 ptMaxTrackSize.X := Max_Width; {Maximum width.}
 if Max_Height <> 0 then
 ptMaxTrackSize.Y := Max_Height; {Maximum height.}
 end;
 end;
 inherited;
end;

procedure Launch(LClass : TFormClass; var LForm);
var
 LNewForm : TNewForm absolute LForm;
begin
 if LNewForm = nil then begin
 Application.CreateForm(LClass,LNewForm);
 LNewForm.FormVar := @LNewForm;
 end else with LNewForm do begin
 BringToFront;
 If WindowState = wsMinimized then
 WindowState := wsNormal;
 end;
end;

end.

➤ Listing 1

October 1996 The Delphi Magazine 21

OnKeyDown. Then it sets KeyPreview
to True: without this the new form
will not see the keystrokes first.
Finally, it saves the OnClose handler
and installs a new one.

CreateParams sets the Width and
Height if Set_Max is True and then
calls the inherited one.

FormKeyPress (the replacement
for OnKeyPress) converts the Enter
key-press to Tab and passes other
keys to the original OnKeyPress.
Recall that OnKeyPress was trapped
only if the conversion was
requested. FormKeyDown (the new
OnKeyDown) does the same.

FormClose sets Application.
OnHint to nil. I set the Application.
OnHint in each form to a local
ShowHint. This cleans it up for me.
If FormStyle is fsMdiChild then it
sets Action to caFree, thus closing
the form. If OldOnClose is assigned
then it calls it. Finally, if FormVar is
assigned it sets it to nil. This
allows Launch to determine if the
form is already running.

WMGetMinMaxInfo is a Windows
message method. It is called by
Windows prior to sizing, minimis-
ing or maximising the form.

The Launch procedure checks to
see if the LForm variable passed is
assigned. If it’s nil then the form is
created and the address of this
variable is stored in the local
variable FormVar. This may seem
convoluted but it is required.
FormClose checks this variable and
sets the LForm to nil via this
pointer. If LForm is already assigned
then the Launch procedure brings
the form to the front and if it is
minimised un-minimises it.

Conclusion
I hope you find that this technique
eliminates repetitive chores but,
more importantly, ensures that
you do not forget to do the chore. I
have many other form components
inherited from this basic one in my
projects, thus allowing me to have
common code in one place.

Rohit Gupta lives and works in
New Zealand. He specialises in
Veterinary and Hairdressing soft-
ware and can be contacted by
email as rohit@cfl.co.nz

22 The Delphi Magazine Issue 14

	Creating And Using The Form Components
	Drawbacks
	Using NewForms
	Conclusion

